User manual

UM EN PSI-MODEM-3G/ROUTER

Order No.: —

Industrial 3G (UMTS/HSPA) mobile phone router with integrated firewall and VPN
INTERFACE

User manual
Industrial 3G (UMTS/HSPA) mobile phone router with integrated firewall and VPN

Designation: UM EN PSI-MODEM-3G/ROUTER
Revision: 01
Order No.: —

This user manual is valid for:

<table>
<thead>
<tr>
<th>Designation</th>
<th>Revision</th>
<th>Order No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSI-MODEM-3G/ROUTER</td>
<td>From 00</td>
<td>2314008</td>
</tr>
</tbody>
</table>
Please observe the following notes

In order to ensure the safe use of the product described, you have to read and understand this user manual. The following notes provide information on how to use this user manual.

User group of this manual
The use of products described in this manual is oriented exclusively to PHOENIX CONTACT accepts no liability for erroneous handling or damage to products from PHOENIX CONTACT or third-party products resulting from disregard for the information contained in this user manual.

Explanation of symbols used and signal words
This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety measures that follow this symbol to avoid possible personal injury or death.

DANGER
This indicates a hazardous situation which, if not avoided, will result in death or serious injury.

WARNING
This indicates a hazardous situation which, if not avoided, could result in death or serious injury.

CAUTION
This indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.

The following types of messages provide information about possible property damage and general information concerning proper operation and ease-of-use.

NOTE
This symbol and the accompanying text alert the reader to a situation which may cause damage or malfunction to the device, hardware or software, or surrounding property.

This symbol and the accompanying text provide the reader with additional information, such as tips and advice on the efficient use of hardware and on software optimization. It is also used as a reference to other sources of information (user manuals, data sheets).
General terms and conditions of use for technical documentation

PHOENIX CONTACT reserves the right to alter, correct, and/or improve the technical documentation and the products described in the technical documentation at its own discretion and without giving prior notice, insofar as this is reasonable for the user. The same applies to any technical changes that serve the purpose of technical progress.

The receipt of technical documentation (in particular data sheets, installation instructions, user manuals, etc.) does not constitute any further duty on the part of PHOENIX CONTACT to furnish information on alterations to products and/or technical documentation. Any other agreement shall only apply if expressly confirmed in writing by Phoenix Contact. Please note that the supplied documentation is product-specific documentation only and that you are responsible for checking the suitability and intended use of the products in your specific application, in particular with regard to observing the applicable standards and regulations.

Although PHOENIX CONTACT makes every effort to ensure that the information content is accurate, up-to-date, and state-of-the-art, technical inaccuracies and/or printing errors in the information cannot be ruled out. Phoenix Contact does not offer any guarantees as to the reliability, accuracy or completeness of the information. All information made available in the technical data is supplied without any accompanying guarantee, whether expressly mentioned, implied or tacitly assumed. This information does not include any guarantees regarding quality, does not describe any fair marketable quality, and does not make any claims as to quality guarantees or guarantees regarding the suitability for a special purpose.

Phoenix Contact accepts no liability or responsibility for errors or omissions in the content of the technical documentation (in particular data sheets, installation instructions, user manuals, etc.).

The aforementioned limitations of liability and exemptions from liability do not apply, in so far as liability must be assumed, e.g., according to product liability law, in cases of premeditation, gross negligence, on account of loss of life, physical injury or damage to health or on account of the violation of important contractual obligations. Claims for damages for the violation of important contractual obligations are, however, limited to contract-typical, predictable damages, provided there is no premeditation or gross negligence, or that liability is assumed on account of loss of life, physical injury or damage to health. This ruling does not imply a change in the burden of proof to the detriment of the user.
Statement of legal authority

This manual, including all illustrations contained herein, is copyright protected. Use of this manual by any third party is forbidden. Reproduction, translation, and public disclosure, as well as electronic and photographic archiving and modification require written consent by Phoenix Contact. Violators are liable for damages.

PHOENIX CONTACT reserves all rights in the case of patent award or listing of a registered design. Third-party products are always named without reference to patent rights. The existence of such rights shall not be excluded.

How to contact us

Internet

Up-to-date information on PHOENIX CONTACT products and our Terms and Conditions can be found on the Internet at:

Make sure that you are always working with the current documentation. It can be downloaded at:
www.phoenixcontact.net/catalog.

Subsidiaries

If there are any problems that cannot be solved using the documentation, please contact your Phoenix Contact subsidiary. Subsidiary contact information is available at www.phoenixcontact.com.

Published by

PHOENIX CONTACT GmbH & Co. KG
Flachsmarktstraße 8
32825 Blomberg
DEUTSCHLAND
Telefon +49 - (0) 52 35 - 3-00
Telefax +49 - (0) 52 35 - 3-4 12 00

Should you have any suggestions or recommendations for improvement of the contents and layout of our manuals, please send your comments to:
tecdoc@phoenixcontact.com
Table of contents

1 Description of the 3G router ... 1-1
1.1 Description ... 1-1
1.2 Ordering data .. 1-2
1.3 Technical data .. 1-2

2 Hardware Installation ... 2-1
2.1 Housing dimensions ... 2-1
2.2 Mounting the module on a DIN rail ... 2-1
2.3 Description of the connections and LEDs ... 2-2
2.4 Establishing connections .. 2-3
2.4.1 Safety notes .. 2-3
2.4.2 Connecting Ethernet networks .. 2-4
2.4.3 Connecting the antenna ... 2-5
2.4.4 Inserting the SIM card .. 2-6
2.4.5 Connecting the supply voltage ... 2-8
2.4.6 Connecting switching inputs and outputs .. 2-9
2.4.7 Resetting the router ... 2-9

3 Configuration via WBM ... 3-1
3.1 Connection requirements ... 3-1
3.2 Starting web-based management (WBM) .. 3-1
3.3 Device Information (View device status) ... 3-2
3.3.1 Hardware .. 3-2
3.3.2 Software .. 3-3
3.3.3 Status .. 3-4
3.4 Local Network (Set up local network) .. 3-8
3.4.1 IP Configuration (Set up connection) .. 3-8
3.4.2 DHCP Server .. 3-10
3.4.3 Static Routes .. 3-11
3.4.4 SNMP Configuration ... 3-12
3.5 Wireless Network (Mobile phone settings) ... 3-13
3.5.1 Radio Setup ... 3-13
3.5.2 SIM ... 3-15
3.5.3 Backup SIM ... 3-17
3.5.4 SMS Configuration (SMS settings) ... 3-19
3.5.5 Packet Data Setup .. 3-21
3.5.6 Wireless Static Routes ... 3-22
3.5.7 DynDNS ... 3-23
3.5.8 Connection Check .. 3-24
3.6 Network Security (Security settings) .. 3-25
3.6.1 General Setup .. 3-25
3.6.2 Firewall (Definition of firewall rules) ... 3-26
3.6.3 NAT Table (setting port forwarding) ... 3-29
3.7 VPN ..3-31
 3.7.1 IPsec Connections (IPsec connection setup) ..3-32
 3.7.2 IPsec Certificates (Certificate upload) ..3-38
 3.7.3 IPsec Status (Status of the VPN connection) ..3-41
 3.7.4 OpenVPN Client (Create OpenVPN connections)3-42
 3.7.5 OpenVPN Certificates (Certificate upload) ...3-44
 3.7.6 OpenVPN Status (VPN connection status) ...3-45

3.8 I/O ...3-46
 3.8.1 Inputs (Configuring inputs) ..3-46
 3.8.2 Outputs (Configuring outputs) ..3-48
 3.8.3 Phonebook ...3-49
 3.8.4 Socket Server ..3-50

3.9 System ...3-52
 3.9.1 User (Password modification) ...3-52
 3.9.2 Log Configuration ..3-53
 3.9.3 Log File ..3-54
 3.9.4 SMTP Configuration ...3-55
 3.9.5 Configuration Up-/Download ..3-56
 3.9.6 RTC (Time and date setup) ..3-57
 3.9.7 Reboot (Router restart) ...3-59
 3.9.8 Firmware Update ..3-60

3.10 CIDR (Classless Inter-Domain Routing) ..3-61

4 Creating certificates ...4-1
 4.1 Installing XCA ...4-1
 4.2 Creating a database ..4-1
 4.3 Creating a CA certificate ..4-3
 4.4 Creating machine certificates ...4-7
 4.4.1 Creating templates ..4-7
 4.4.2 Creating machine certificates based on a template4-11
 4.4.3 Exporting machine certificates ...4-14

5 Application examples ...5-1
 5.1 Internet access ...5-1
 5.1.1 Before you begin ..5-1
 5.1.2 Setting up the PSI-MODEM-3G/ROUTER ..5-2
 5.2 Safe VPN connections to FL MGUARD ..5-4
 5.2.1 Before you begin ..5-4
 5.2.2 Network overview ..5-5
 5.2.3 Creating certificates ..5-6
 5.2.4 Loading certificates in the router ..5-6
 5.2.5 Setting up the VPN connection on the modem5-8
 5.2.6 Configuring the FL MGUARD RS VPN ...5-10
Table of contents

5.2.7 Loading certificates on the FL MGUIARD RS VPN5-11
5.2.8 Setting a packet filter on the FL MGUIARD RS VPN5-13
5.2.9 Setting up the RS VPN in the FL MGUIARD5-14

5.3 Virtual Ethernet dedicated line...5-17
5.3.1 Before you begin ..5-17
5.3.2 Network overview ...5-18
5.3.3 Creating certificates ...5-18
5.3.4 Loading certificates in the client router (Device "A")5-19
5.3.5 Setting up the VPN connection in the client router5-21
5.3.6 Loading certificates in the server router (Device "B")5-23
5.3.7 Setting up the VPN connection on the server router5-25
1 Description of the 3G router

1.1 Description

The 3G router PSI-MODEM-3G/ROUTER is a high-performance router for industrial Ethernet networks which can be used to securely transmit sensitive data via GSM networks. The integrated firewall and the VPN support (Virtual Private Network) protect your application against unauthorized access.

A UMTS/HSPA connection simply incorporates remote stations into an IP network. If UMTS/HSPA is not available, the system automatically switches to GPRS/EDGE.

Regardless of where your system or controller is situated, you can access the process data via a secure VPN connection from any location.

EMC, electrical isolation and surge protection are provided for reliable and secure communication.

The data link and cell phone network quality are also monitored. If necessary, an appropriate message is sent or the cell phone connection re-established.

Six configurable switching inputs allow the user to independently send an SMS or e-mail both to one or several recipients.

Four integrated switching outputs can be activated using a password-protected SMS message. The system status can thereby be monitored and functions switched remotely.

Features

- UMTS/HSPA tri-band (850 MHz/1900 MHz/2100 MHz)
- GPRS/EDGS quad-band (850 MHz/900 MHz/1800 MHz/1900 MHz)
- GPRS (General Packet Radio Service), EDGE (Enhanced Data Rates for GSM Evolution) and UMTS (Universal Mobile Telecommunications System)
- Second SIM card slot for backup mobile phone network
- Virtual dedicated line to connect networks via cell phone network
- Integrated firewall
- IPsec and OpenVPN support
- VPN remote start via SMS or call
- Configurable inputs and outputs
- Alarming by SMS, e-mail or fax directly via integrated switching input
- Further supply voltage range of 10 V DC ... 30 V DC
- Temperature range of -25°C ... +65°C
- High-quality electrical isolation (VCC // UMTS // Ethernet // PE)
- Integrated surge protection
- Easy configuration via web-based management (WBM)
1.2 Ordering data

<table>
<thead>
<tr>
<th>Description</th>
<th>Type</th>
<th>Order No.</th>
<th>Pcs. / Pkt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMTS/HSPA cell phone router with Ethernet interface, firewall, VPN support</td>
<td>PSI-MODEM-3G/ROUTER</td>
<td>2314008</td>
<td>1</td>
</tr>
<tr>
<td>and alarm inputs and outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Type</td>
<td>Order No.</td>
<td>Pcs. / Pkt.</td>
</tr>
<tr>
<td>GSM-UMTS antenna with omnidirectional characteristics, antenna cable with</td>
<td>PSI-GSM/UMTS-QB-ANT</td>
<td>2313371</td>
<td>1</td>
</tr>
<tr>
<td>SMA round connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>76 mm x 20 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM-UMTS omnidirectional antenna, 2 dBi boost, 5 m antenna cable with</td>
<td>PSI-GSM/UMTS-ANT-OMNI-2-5</td>
<td>2900982</td>
<td>1</td>
</tr>
<tr>
<td>SMA round connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>2 m</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM/UMTS antenna cable, 10 m long; SMA (male) -> SMA (female), 50 Ohm</td>
<td>PSI-CAB-GSM/UMTS-10M</td>
<td>2900981</td>
<td>1</td>
</tr>
<tr>
<td>impedance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GSM/UMTS antenna cable, 5 m long; SMA (male) -> SMA (female), 50 Ohm</td>
<td>PSI-CAB-GSM/UMTS-5M</td>
<td>2900980</td>
<td>1</td>
</tr>
<tr>
<td>impedance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System power supply, primary switched</td>
<td>MINI-SYS-PS-100-240AC/24DC/1.5</td>
<td>2866983</td>
<td>1</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>45 Hz ... 65 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal output voltage</td>
<td>85 V AC ... 264 V AC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal output current</td>
<td>24 V DC ±1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5 A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.3 Technical data

Supply			
Supply voltage	10 V DC ... 30 V DC	via plug-in COMBICON screw terminal block	
Frequency	DC		
Current consumption			
Nominal current consumption	< 200 mA at 24 V, < 580 mA at 10 V		
Standby current consumption	< 90 mA at 24 V		
LED display	Power (green LED)		
Steady light: Operation			
Ethernet interface			
Connection method	RJ45 female connector, shielded		
Transmission speed	10/100 Mbps		
Transmission distance	100 m (twisted pair, shielded)		
Supported protocols	TCP/IP, UDP/IP, FTP, HTTP		
Secondary protocols	ARP, DHCP, PING (ICMP), SNMP V1, SMTP		
LED display/control signal indicator	ACT (yellow LED), Ethernet data transmission		
LINK (green LED), Ethernet link established			

Function

- Management: Web-based management, SNMP
Mobile phone network

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMTS frequencies</td>
<td>850 MHz, 1900 MHz, 2100 MHz (UMTS/HSPA)</td>
</tr>
<tr>
<td>Transmission power</td>
<td>0.25 W</td>
</tr>
<tr>
<td>UMTS compatibility</td>
<td>UMTS/HSPA 3GPP release 6</td>
</tr>
<tr>
<td></td>
<td>– HSUPA max. 5.76 Mbps</td>
</tr>
<tr>
<td></td>
<td>– HSDPA max. 7.2 Mbps</td>
</tr>
<tr>
<td>SIM Interface</td>
<td>2 interfaces, 1.8-volt and 3-volt SIM card</td>
</tr>
<tr>
<td>GSM frequencies</td>
<td>850 MHz, 900 MHz, 1800 MHz, 1900 MHz (GPRS/EDGS)</td>
</tr>
<tr>
<td>GPRS compatibility</td>
<td>GPRS Class 12, Class B</td>
</tr>
<tr>
<td></td>
<td>Coding diagrams: CS1 ... CS4</td>
</tr>
<tr>
<td>EDGE</td>
<td>EDGE (E-GRPS) Multislot Class 10</td>
</tr>
<tr>
<td>Network function</td>
<td>4 time slots for receiving data</td>
</tr>
<tr>
<td></td>
<td>4 time slots for sending data, maximum of 5 time slots at any one time</td>
</tr>
<tr>
<td></td>
<td>The PIN code is stored in the router. After a voltage interrupt, the system</td>
</tr>
<tr>
<td></td>
<td>automatically logs back into the network and the GPRS network.</td>
</tr>
<tr>
<td></td>
<td>Integrated TCP/IP stack, firewall and VPN support, automatic connection</td>
</tr>
<tr>
<td>Antenna connection</td>
<td>50 Ω impedance SMA female antenna connector</td>
</tr>
<tr>
<td>LED</td>
<td>SIM (green LED)</td>
</tr>
<tr>
<td></td>
<td>– Steady light: SIM card active</td>
</tr>
<tr>
<td></td>
<td>– Flashing: No PIN code entered</td>
</tr>
<tr>
<td></td>
<td>– Off: SIM card inactive or not available</td>
</tr>
<tr>
<td>Switch-on diagnostics</td>
<td>Self-test, visualization via LEDs</td>
</tr>
<tr>
<td></td>
<td>(controller, RAM, EPROM, GSM engine, antenna, EEPROM)</td>
</tr>
<tr>
<td>Network check</td>
<td>Network bar graph in web-based management</td>
</tr>
</tbody>
</table>

Switching inputs and outputs

Switching inputs

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input range</td>
<td>10 V DC ... 30 V DC</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>10 V DC ... 30 V DC</td>
</tr>
<tr>
<td>Activation</td>
<td>SMS, E-mail, Output activation on remote station (via SMS), Reboot, GPRS/EDGE, VPN</td>
</tr>
</tbody>
</table>

Switching outputs

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input range</td>
<td>10 V DC ... 30 V DC</td>
</tr>
<tr>
<td>Short-circuit-proof activated by</td>
<td>– Activation of remote station input, SMS, Web-based management, GSM, GPRS/EDGE, VPN, incoming call and connection abort</td>
</tr>
</tbody>
</table>

Ambient conditions

- **Ambient temperature range (operation):** -25°C ... +65°C not aligned, -25°C ... +60°C aligned
- **Ambient temperature range (storage/transport):** -40°C ... +75°C

General data

Housing

- **Material**: PA 6.6-FR, V0, green
- **Dimensions (W x H x D)**: 99 mm x 45 mm x 114.5 mm

Device weight

- 226 g

Functional earth ground

- Housing contact to DIN rail

Degree of protection

- IP 20

Separate ground levels

- VCC // UMTS // Ethernet // PE
General data [...]

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibration resistance</td>
<td>According to DIN EN 60068-2-6
5 g, per 1.5 h in x-, y-, z-direction</td>
</tr>
<tr>
<td>Shock testing</td>
<td>According to DIN EN 60068-2-27
15 g, 11 ms, half-sine shock pulse</td>
</tr>
<tr>
<td>Operation Bearings</td>
<td>30 g, 11 ms, half-sine shock pulse</td>
</tr>
<tr>
<td>Free fall</td>
<td>According to IEC 60068-2-32 from height of 1 m (unpacked)</td>
</tr>
<tr>
<td>Test voltage</td>
<td>500 V AC, 50 Hz, 1 min. between all potential levels according to DIN EN 61010-1 / VDE 0411-1 and DIN EN 60950</td>
</tr>
<tr>
<td>CE conformance</td>
<td>According to R&TTE Directive 1999/5/EC</td>
</tr>
</tbody>
</table>

Electromagnetic compatibility

Noise immunity according to EN 61000-6-2

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrostatic discharge (ESD)</td>
<td>EN 61000-4-2
Criterion B
8 kV air discharge
4 kV contact discharge</td>
</tr>
<tr>
<td>Electromagnetic RF field</td>
<td>EN 61000-4-3
Criterion A
10 V/m</td>
</tr>
<tr>
<td>Amplitude modulation</td>
<td></td>
</tr>
<tr>
<td>Pulse modulation</td>
<td></td>
</tr>
<tr>
<td>Fast transients (burst)</td>
<td>EN 61000-4-4
Criterion A
1 kV / 5 kHz
Criterion A
1 kV / 5 kHz
Criterion B
1 kV / 5 kHz</td>
</tr>
<tr>
<td>Signal</td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td></td>
</tr>
<tr>
<td>Surge current loads (surge)</td>
<td>EN 61000-4-5
Criterion B
1 kV
1 kV symmetrical, 2 kV symmetrical</td>
</tr>
<tr>
<td>Signal</td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td></td>
</tr>
<tr>
<td>Conducted influence</td>
<td>EN 61000-4-6
Criterion A
10 V
Class A</td>
</tr>
<tr>
<td>Noise emission</td>
<td>EN 55011</td>
</tr>
</tbody>
</table>

CE conformance according to R&TTE Directive 1999/5/EC

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMC</td>
<td>EN 61000-6-2
Specialized standard for industry</td>
</tr>
<tr>
<td>Safety</td>
<td>EN 60950</td>
</tr>
<tr>
<td>Health</td>
<td>Official Journal of the European Communities 1999/519/EC
Recommendation of the Council of the European Community from July 12, 1999</td>
</tr>
<tr>
<td>Radio</td>
<td>DIN EN 301511</td>
</tr>
</tbody>
</table>

Approvals

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL, USA/Canada</td>
<td>In progress</td>
</tr>
</tbody>
</table>
2 Hardware Installation

2.1 Housing dimensions

Figure 2-1 Housing dimensions (in mm)

2.2 Mounting the module on a DIN rail

NOTE: Only mount and remove the router when the power supply is disconnected.

NOTE: The DIN rail must be connected to PE to ensure safe operation.

Mount the router on a 35 mm EN DIN rail.

Figure 2-2 Mounting
2.3 Description of the connections and LEDs

Connection terminal blocks
1 Connection terminal blocks (COMBICON): 24 V supply, 0 V supply
2 6 switching inputs, digital
4 4 switching outputs, digital

Connectors
3 SMA female antenna connector
5 RJ45, Ethernet interface (TP port)

Reset button

LEDs
Power (green) Steady light if supply voltage is present
VPN (green) VPN tunnel active
ALR (red) On when there is an alarm event on one of the inputs.
NET (yellow, green, green) yellow, green with very good network reception
 yellow, green with good network reception
 yellow with sufficient network reception
 Off when no or very poor network reception
3G (green) UMTS/HSPA connection active
PD (green) Packet data connection active
SIM 1/2 (green) On when SIM card 1/2 active
 Flashes if no PIN code entered

On the back
SIM card holder
2.4 Establishing connections

2.4.1 Safety notes

WARNING: Electrical connection may only be carried out by qualified personnel
The electrical connection, startup and operation of this device may only be performed by qualified personnel.
With respect to the safety notes of this document, qualified personnel are persons who are authorized to start up, to ground, and to mark devices, systems, and equipment according to the standards of safety technology. In addition, these persons must be familiar with all warning instructions and maintenance measures in this text.
Disregarding this warning may result in damage to equipment and/or serious personal injury.

WARNING: SELV operation
The PSI-MODEM-3G/ROUTER is exclusively designed for the operation in the control cabinet and for connecting with the safety extra-low voltage (SELV) in accordance with IEC 60950 / EN 60950 / VDE 0805.

WARNING:
The router must only be connected to devices which meet the requirements of EN 60950 (Safety of Information Technology Devices).

WARNING: Disconnect the device power supply before replacing the SIM card
The device only supports 1.8 and 3 V SIM cards. For older SIM cards, please contact your GSM service provider.
2.4.2 Connecting Ethernet networks

WARNING: Disconnect the device power supply before replacing the SIM card

The router must only be connected to devices which meet the requirements of EN 60950 (Safety of Information Technology Devices).

NOTE:

Only use shielded twisted pair cables and matching shielded RJ45 connectors.

The PSI-MODEM-3G/ROUTER has an Ethernet interface on the front in RJ45 format, to which only twisted pair cables with an impedance of 100 Ω can be connected.

Plug the Ethernet cable with the crimped RJ45 connector into the TP interface until the connector engages audibly.

Observe the connector keying.

![RJ45 Interface Diagram](image)

Figure 2-3 RJ45 interface
2.4.3 Connecting the antenna

![Antenna connection with SMA connector](image)

1. Connect a suitable antenna to the antenna connection.
2. If the "NET" bar graph indicates good (yellow, green) or very good (yellow, green, green) reception, secure the antenna.

Installing the antenna

1. Select an antenna position with a good wireless network signal. The "NET" bar graph can be used to determine the receive quality.
2. When using the PSI-GSM/UMTS-QB-ANT antenna (Order No. 2313371), drill a hole measuring 16.5 mm in diameter in the top of the control cabinet.

NOTE: Please observe the following during installation:
- The antenna has a diameter of 76 mm and is 21 mm high.
- The cable is 2 meters long.
3. Secure the antenna using the washer and nut provided:

![Figure 2-5 PSI-GSM/UMTS-QB-ANT antenna installation](image)

WARNING: Disconnect the device power supply before replacing the SIM card
The device only supports 1.8 and 3 V SIM cards. For older SIM cards, please contact your GSM service provider.

NOTE: Electrostatic discharge
The device contains components that can be damaged or destroyed by electrostatic discharge. When handling the device, observe the necessary safety precautions against electrostatic discharge (ESD) according to EN 61340-5-1 and EN 61340-5-2 and IEC 61340-5-1.

Remove SIM card holder

1. Push the yellow release button with a pointed object.
2. Remove the SIM card holder.
Inserting the SIM card

You receive a SIM card from the GSM provider, on which all data and services for your connection are stored.

1. Insert the SIM card so that the SIM chip remains visible.
2. Fully insert the SIM card holder together with the SIM card into the device until this ends flush with the housing.

PIN code

The SIM card can be protected with a 4 or 5-digit PIN code.

It is recommended that you enter the PIN code as described in Section “SIM” on page 3-15.

When selecting the SIM card, please note that a packet data connection (GPRS or EDGE) is required for the core functions (VPN router).
2.4.5 Connecting the supply voltage

WARNING: SELV operation
The PSI-MODEM-3G/ROUTER is exclusively designed for the operation in the control cabinet and for connecting with the safety extra-low voltage (SELV) in accordance with IEC 60950 / EN 60950 / VDE 0805.

The supply voltage should be 10 V DC ... 30 V DC.
1. Connect the supply voltage to the plug-in screw terminal block to 24 V and 0 V.
 Observe the polarity.
2. The device is ready for operation as soon as the power LED lights up.

Figure 2-6 Connecting the supply voltage
2.4.6 Connecting switching inputs and outputs

![Diagram of wiring inputs](image)

1. Connect the switching inputs and outputs to the relevant plug-in screw terminal blocks.
 - To the switching inputs (I1 ... I6) you can connect 10 ... 30 V DC.
 - The short-circuit-proof switching outputs (O1 ... O4) are designed for max. 50 mA at 10 ... 30 V DC.
2. You must connect the 0 V potential of the switching inputs and outputs to the "0 V" terminal of the voltage supply connection.

2.4.7 Resetting the router

The router has a reset button (Position 6 in "Description of the connections and LEDs" on page 2-2), for resetting the router's IP address in the default upon delivery.

1. Press and hold down the reset button (6).
2. Disconnect the Ethernet cable from the LAN connection on the router.
3. Reconnect the Ethernet cable.
4. Press and hold down the reset button for another 5 seconds.

The IP address is reset to the setting default upon delivery. The router can be accessed at 192.168.0.1.
3 Configuration via WBM

3.1 Connection requirements

- The router PSI-MODEM-3G/ROUTER must be connected to the power supply.
- The computer that is to be used for configuration must be connected to the LAN female connector on the router.
- A browser (e.g., Mozilla Firefox, Microsoft Internet Explorer or Apple Safari) must be installed on the configuration computer.

3.2 Starting web-based management (WBM)

The PSI-MODEM-3G/ROUTER is configured via web-based management (WBM).

1. Establish an Ethernet connection from the PSI-MODEM-3G/ROUTER to a PC.
2. Open a browser on the PC.
3. Set the IP address of your PC to the network of the router.
4. Enter the IP address 192.168.0.1 in the address field of your browser.

The following page opens in the browser.

This page protects the area in WBM where router settings are modified.
A user name and password are required in order to log in.
- The user name is "admin" and the password is "admin".

For security reasons, we recommend you change the password during initial configuration (see "User (Password modification)" on page 3-52).
There are two user levels:

- User: Read-only access to the "Device Information" menu item
- Admin: Full access to all areas.

To configure the router, make the desired settings on the individual pages of the router user interface.

3.3 Device Information (View device status)

This area can be accessed with the "User" login and displays information about the hardware, software, and status of the router.

3.3.1 Hardware

<table>
<thead>
<tr>
<th>Device Information >> Hardware</th>
</tr>
</thead>
</table>

Hardware

- **Address**: Address of the manufacturer
- **Internet**: Internet address of the manufacturer
- **Type**: Router order designation
- **Order No.**: Router order number
- **Serial Number**: Router serial number
- **Hardware**: Router hardware version
- **Release Version**: Router software release version
- **Operating System**: Operating system version
- **Web-Based Management**: Version of web-based management
3.3.2 Software

All installed software modules with version codes are listed under this menu item.
3.3.3 Status

Current status information about the GSM network and the network connections is displayed here.

3.3.3.1 Radio

<table>
<thead>
<tr>
<th>Device Information >> Status >> Radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radio Status</td>
</tr>
<tr>
<td>Network Status</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Signal Level</td>
</tr>
</tbody>
</table>
Device Information >> Status >> Radio [...]

| Packet Data | Offline: There is no packet data connection in the mobile phone network.
| | GPRS online: There is an active packet data connection in the mobile phone network via GPRS. GPRS is a GSM service, which provides packet-based wireless access for mobile GSM users.
| | EDGE online: There is an active packet data connection in the mobile phone network via EDGE. EDGE is a further development of the GPRS data service with a higher data transmission rate.
| | UMTS online: There is an active high-speed packet data connection in the 3G mobile phone network via UMTS.
| | HSDPA/UPA online: There is an active high-speed packet data connection in the 3G mobile phone network via HSDPA/UPA. HSDPA/UPA is a further development of the UMTS network with a higher data transmission rate. |

<table>
<thead>
<tr>
<th>Local Area Code</th>
<th>Area code within mobile phone network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell ID</td>
<td>Unique mobile phone cell ID</td>
</tr>
</tbody>
</table>
3.3.3.2 Network Connections

The "Network Connections" page displays status information about the local Ethernet interface and the packet data interface in the mobile phone network.

<table>
<thead>
<tr>
<th>Network Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless Network</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Local Network</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
3.3.3.3 I/O Status
Current status information and input and output configurations are displayed on the "I/O Status" page.

3.3.3.4 Routing Table
All routing table entries are displayed here.
3.4 Local Network (Set up local network)

3.4.1 IP Configuration (Set up connection)

The connection from the router to the local Ethernet computer can be set up here. The IP configuration can also be modified here. The IP address, subnet mask, and the type of address assignment can be set.

Changes to the router's IP configuration are automatically adopted after restarting. Changed IP configurations can be stored manually by following these steps:
1. Press and hold down the "Reset" button.
2. Remove Ethernet cable.
3. Release the Reset button.
4. Plug the Ethernet cable back in.

Local Network >> IP Configuration

<table>
<thead>
<tr>
<th>IP Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Addresses</td>
</tr>
<tr>
<td>Current IP address of the computer that is connected to the router's TP interface.</td>
</tr>
<tr>
<td>You can use the Reset button to reset the IP address to the default address 192.168.0.1 (see "Resetting the router" on page 2-9).</td>
</tr>
<tr>
<td>Subnet mask</td>
</tr>
<tr>
<td>The subnet mask for the current IP address.</td>
</tr>
<tr>
<td>Type of IP address assignment</td>
</tr>
<tr>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Alias Addresses
3.4.2 DHCP Server

The Dynamic Host Configuration Protocol (DHCP) can be used to automatically assign the network configuration set here to the devices connected directly to the router.

- **DHCP Server**: Deactivated/Activated
- **Domain Name**: Enter a domain name that will be distributed via DHCP.
- **Lease Time (d,h,m,s)**: Time for which the network configuration assigned to the client is valid. The client should renew its assigned configuration shortly before this time elapses. Otherwise it may be assigned to other computers.
- **Dynamic IP address allocation**: Dynamic IP address pool: When the DHCP server and the dynamic IP address pool have been activated, you can specify the network parameters to be used by the client.
- **Begin IP Range** and **End IP Range**: Start of DHCP area: The start of the address area from which the DHCP server should assign IP addresses to locally connected devices. End of DHCP area: The end of the address area from which the DHCP server should assign IP addresses to locally connected devices.
- **Static IP address allocation**: Static assignment [based on the MAC address]: The client's static IP to which the MAC address should be assigned.
- **Client MAC Address**: Client's MAC-address (with hyphens)
3.4.3 Static Routes

With local, static routes, alternative routes can be established for data packets from the local network via other gateways in overlapping networks.

Local Network>> DHCP Server [...]

Client IP Address
Client IP address
Static assignments must not overlap with the dynamic IP address pool.
Do not use one IP address in multiple static assignments, otherwise multiple MAC addresses will be assigned to this IP address.

Local Network>> Static Routes

<table>
<thead>
<tr>
<th>Static Routes</th>
<th>Network</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Network in CIDR format - see “CIDR (Classless Inter-Domain Routing)” on page 3-61</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The gateway via which this network can be accessed.</td>
</tr>
</tbody>
</table>
3.4.4 SNMP Configuration

The mobile phone router supports the reading of information via SNMP.

System Information
- **Name of Device**: A freely assignable name for management purposes
- **Description**: Description of the router
- **Physical location**: Freely assignable designation of installation site
- **Contact**: Entry for a contact person responsible for the router

SNMPv1/v2 Community
- **Read only**: Password for read-access via SNMP
- **Read and write**: Password for read/write access via SNMP

Trap Configuration
- **Trap manager IP address**: IP address that should be sent to the trap
- **Port**: Port to which the trap should be sent
- **Target Community**: Name of the SNMP community to which the trap is assigned.
- **Sending traps**:
 - **Disable**: It is not possible to send traps to the trap manager’s IP address.
 - **Enable**: Sending traps to the trap manager’s IP address has been activated.
3.5 Wireless Network (Mobile phone settings)

Remote stations can be integrated into an IP network via a UMTS/HSPA or GPRS/EDGE connection. The connection can be configured here.

3.5.1 Radio Setup

In the frequency field, the frequency range in which the router should work can be chosen by using the selection list.

In the UMTS Freq. field, you can choose the frequency range for UMTS in which the router should work by using the selection list. In addition, you can deactivate the UMTS with "UMTS off".

Decide whether you can use a second SIM card for a backup mobile phone connection.

Period of time, in minutes, following the failure of the primary mobile phone network, at which the switch will be made to the backup SIM card.

Period of time in hours, after which there will be a switch back to the primary mobile phone network.

Disable: Deactivate daily login

Enable: Activate daily login; with daily login, first there will be an attempt to register with the primary mobile phone network.
<table>
<thead>
<tr>
<th>Time</th>
<th>Time period at which the router logs out under controlled conditions and logs in again. During re-login, first there is an attempt to register with the primary mobile phone network.</th>
</tr>
</thead>
</table>

Wireless Network >> Radio Setup [...]
3.5.2 SIM

This is where all the settings for the primary mobile phone connection are.

Wireless Network >> SIM

<table>
<thead>
<tr>
<th>SIM</th>
<th>Country</th>
<th>Select the country in which the router is dialing into the GSM network. This setting limits the selection under Provider.</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN</td>
<td></td>
<td>In the PIN field, enter the PIN for the SIM card. The PIN cannot be read back, it can only be overwritten.</td>
</tr>
<tr>
<td>Roaming</td>
<td></td>
<td>If Roaming is activated (default), a specific provider can be selected from the "Provider" pull-down menu.</td>
</tr>
<tr>
<td></td>
<td>Provider</td>
<td>Select a provider via which the router is to establish the Internet connection. The country selected under Country limits the list of providers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Enable: The router can also dial-in via external networks. If Auto is set under Provider, the strongest provider is selected. Depending on your contract, this can incur additional costs. Alternatively, you can specify a provider.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Disable: Roaming is deactivated and only the provider's home network is used. If this network is unavailable, the router cannot establish an Internet connection.</td>
</tr>
<tr>
<td></td>
<td>Internet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Password</td>
<td></td>
</tr>
<tr>
<td></td>
<td>APN</td>
<td>web.vodafone.de</td>
</tr>
</tbody>
</table>
Wireless Network >> SIM [...]

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Username</td>
<td>User name for packet data access. The user name and password can be obtained from your provider. During configuration, do not leave the user name and password empty, even when the provider does not require a particular entry! Otherwise, a packet data connection is not possible.</td>
</tr>
<tr>
<td>Password</td>
<td>Password for packet data access</td>
</tr>
<tr>
<td>APN</td>
<td>The APN can be obtained from your provider. APN: (Access Point Name) is the name of a terminal point in a packet data network, which enables access to an external data network. At the same time, the APN specifies which network is to be used to establish a connection for public APN, usually to the Internet.</td>
</tr>
</tbody>
</table>
3.5.3 Backup SIM

Here, you will find all settings for the alternative backup mobile phone connection.

Wireless Network >> Backup SIM

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country</td>
<td>Select the country in which the router is dialing into the GSM network. This setting limits the selection under Provider.</td>
</tr>
<tr>
<td>PIN</td>
<td>In the PIN field, enter the PIN for the SIM card. The PIN cannot be read back, it can only be overwritten.</td>
</tr>
<tr>
<td>Roaming</td>
<td>If Roaming is activated (default), a specific provider can be selected from the "Provider" pull-down menu.</td>
</tr>
<tr>
<td>Enable</td>
<td>Enable: The router can also dial-in via external networks. If Auto is set under Provider, the strongest provider is selected. Depending on your contract, this can incur additional costs. Alternatively, you can specify a provider.</td>
</tr>
<tr>
<td>Disable</td>
<td>Disable: Roaming is deactivated and only the provider's home network is used. If this network is unavailable, the router cannot establish an Internet connection.</td>
</tr>
<tr>
<td>Provider</td>
<td>Select a provider via which the router is to establish the Internet connection. The country selected under Country limits the list of providers.</td>
</tr>
<tr>
<td>Auto</td>
<td>Auto: The router automatically selects the provider.</td>
</tr>
<tr>
<td>Username</td>
<td>User name for packet data access. The user name and password can be obtained from your provider. During configuration, do not leave the user name and password empty, even when the provider does not require a particular entry! Otherwise, a packet data connection is not possible.</td>
</tr>
<tr>
<td>Password</td>
<td>Password for packet data access</td>
</tr>
<tr>
<td>APN</td>
<td>The APN can be obtained from your provider. APN: (Access Point Name) is the name of a terminal point in a packet data network, which enables access to an external data network. At the same time, the APN specifies which network is to be used to establish a connection for public APN, usually to the Internet.</td>
</tr>
</tbody>
</table>
3.5.4 SMS Configuration (SMS settings)

The mobile phone router can be operated remotely via SMS. Activate "SMS Control" and enter the "SMS password". The password can contain up to 7 alphanumeric characters.

SMS syntax for switching E/A and functions:

```
#$<password>:<command>
<password> - ('A'-'Z', '0'-'9') // up to 7 alphanumeric chars
<command>  - SET:<sub_cmd> // set command (ON)
            CLR:<sub_cmd> // clear command (OFF)
            SEND:STATUS // send a status SMS to the caller
            RESET // reset all alarms

<sub_cmd>  - OUTPUT // output 1 set to ON/OFF
            OUTPUT:n // output n set to ON/OFF, n={1..4}
            IPSEC // IPsec VPN 1 ON/OFF
            IPSEC:n  // IPsec VPN n ON/OFF, n={1..3}
```

The router can forward received SMS messages to a recipient via Ethernet. Open "Wireless Network, SMS Configuration" and activate the "SMS forward" function. Enter the recipient IP address and port with which you would like to communicate. The default value for the server is Port 1432.

The received SMS is forwarded in the following format:

```
<?xml version="1.0"?>
<cmgr origaddr="+49172123456789" timestamp="10/05/21,11:27:14+08"> SMS message</cmgr>
```

origaddr = Sender telephone number
timestamp = Service center time stamp in GSM 03.40 format
Wireless Network >> SMS Configuration

| SMS Configuration | SMS control | Disable: Remote operation of router via SMS not possible
| | Enable: Remote operation of router via SMS activated |
| SMS Password | SMS password for remote operation |
| SMS forward | Disable: Not possible to forward SMS messages via Ethernet
	Enable: Forwarding of SMS messages via Ethernet activated
Server IP Address	IP address to which the SMS message should be forwarded
Server Port (default 1432)	Port to which the SMS message should be forwarded
3.5.5 Packet Data Setup

Wireless Network >> Packet Data Setup

Packet Data Setup

Packet Data

- **Disable**: The packet data connection is deactivated.
- **Enable**: Enable access to UMTS/HSPA/GPRS/EDGE.

 If this packet data connection is activated, there is only a virtual permanent connection to the partner. This wireless area is not used until data is actually transmitted, such as via VPN tunnel.

Debug Mode

When debug mode is activated, detailed information on the packet data connection is saved in the log file for diagnostic purposes.

Allow Compression

- **Enable**: The packet data connection data compression is activated (default).
- **Disable**: The packet data connection data compression is deactivated.

MTU (default 1500)

The Maximum Transmission Unit (MTU) describes the maximum packet size, in bytes, in the packet data network.

Event

- **Initiate**: automatic start after router boots
- **Initiate on Input #1 ... #6**: manual start per switching input
Wireless Static Routes

With local static routes, alternative routes in the mobile phone network can be established for data packets.

Manual DNS
- **Disable**: Deactivate manual DNS setting. The DNS settings are received automatically from the provider.
- **Enable**: Enable manual DNS setting.

DNS server
IP address of the primary DNS server in the mobile phone network

Sec. DNS server
IP address of the alternative DNS server in the mobile phone network

Wireless Static Routes

The network in CIDR format - see "CIDR (Classless Inter-Domain Routing)" on page 3-61

The gateway via which this network can be accessed.
3.5.7 DynDNS

Each mobile phone router dynamically receives from the provider an IP address assignment, meaning that the address changes from session to session.

If the mobile phone router can be reached over the Internet, a fixed host name must be established, using the assistance of the DynDNS provider, for the dynamic IP address at which the router can be reached in the future, such as: www.example.com.

| Wireless Network >> DynDNS Setup |
|-----------------|-----------------|-----------------|-----------------|
| **DynDNS Setup** | **DynDNS** | **DynDNS Provider** | **DynDNS Username** |
| Disable: Deactivate DynDNS client | Enable: Activate DynDNS client | Select the name of the provider with whom you are registered, e.g., DynDNS.org, TZO.com, dhs.org | Here, enter your DynDNS account user name. |
| **DynDNS Password** | **DynDNS Hostname** | **DynDNS Password** | **DynDNS Hostname** |
| Here, enter your DynDNS account password. | The host name chosen for this router with the DynDNS service. Your router can be accessed via this host name. |
3.5.8 Connection Check

Using the "Connection check," it is possible to check whether the packet data connection in the mobile phone network is functional.

Connection Check

- **Disable**: The packet data connection connection check is deactivated (default).
- **Enable**: The connection check for the packet data connection is activated.

Host #1 ... #3

Here, enter the reference point IP address or host name for the connection check. Activate the "Local" option for an address in a remote network that can be accessed via a VPN tunnel.

Check every

Here, enter the check interval in minutes.

Max. retry

Enter the number of repetitions until the configured action is implemented.

Activity

Choose the action from the selection list:
- **Reboot**: Router re-started
- **Reconnect**: Packet data connection re-started
- **Relogin**: Shutdown and restart of the mobile phone interface with new login to the mobile phone network.
- **None**: No action
3.6 Network Security (Security settings)

3.6.1 General Setup

On this page, the fundamental settings for network security can be made.

<table>
<thead>
<tr>
<th>Network Security Setup</th>
<th>Firewall</th>
<th>Block outgoing Netbios</th>
<th>Ping (ICMP) external</th>
<th>VHA based Management external</th>
<th>NAT (Masquerade) external</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
<td>Disable</td>
</tr>
<tr>
<td></td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
<td>Enable</td>
</tr>
</tbody>
</table>

Firewall

Disable: The integrated Stateful Packet Inspection Firewall is deactivated. The data packet is not filtered.

Enable: The integrated Stateful Packet Inspection Firewall is activated (default).

Block outgoing Netbios

If Windows-based systems are installed in the local network, data traffic and any necessary affiliated costs can result from Netbios queries.

Disable: Outgoing netbios queries are permitted.

Enable: Outgoing netbios queries are blocked (default).

Ping (ICMP) external

A ping can be used to check whether a device in an IP network can be accessed. During normal operation, responding to external ping requests results in data traffic and therefore associated costs, if applicable.

Disable: If a ping request is sent from the external IP network to the router, it is ignored (default).

Enable: If a ping request is sent from the external IP network to the router, it is sent back.
3.6.2 Firewall (Definition of firewall rules)

The 3G router includes a Stateful Packet Inspection Firewall.

The connection data of an active connection is recorded in a database (connection tracking). Rules can thus only be defined for one direction. This means that data from the other direction of the relevant connection, and only this data, is automatically allowed through.

The firewall can be enabled and disabled. You can deactivate for startup, for example. With default upon delivery, the firewall is active and blocks the incoming data traffic and only permits outgoing data traffic.

If multiple firewall rules are defined, these are queried starting from the top of the list of entries until an appropriate rule is found. This rule is then applied.

If the list of rules contains further subsequent rules that could also apply, these rules are ignored.
Network Security >> Firewall

Firewall lists the firewall rules that have been set up. They apply for incoming data connections that have been initiated externally.

<table>
<thead>
<tr>
<th>Incoming Traffic</th>
<th>Protocol</th>
<th>TCP, UDP, ICMP, all</th>
</tr>
</thead>
<tbody>
<tr>
<td>From IP/To IP</td>
<td>0.0.0.0/0</td>
<td>means all IP addresses. To specify an address area, use CIDR format (see "CIDR (Classless Inter-Domain Routing)" on page 3-61).</td>
</tr>
<tr>
<td>From Port/To Port</td>
<td>(Only evaluated for TCP and UDP protocols.)</td>
<td></td>
</tr>
<tr>
<td>Action</td>
<td>Accept</td>
<td>the data packets may pass through</td>
</tr>
<tr>
<td></td>
<td>Reject</td>
<td>the data packets are sent back, so the sender is informed of their rejection.</td>
</tr>
<tr>
<td></td>
<td>Drop</td>
<td>the data packets may not pass through. They are discarded, which means that the sender is not informed of their whereabouts.</td>
</tr>
<tr>
<td>Log</td>
<td></td>
<td>For each individual firewall rule you can specify whether the event is to be logged if the rule is applied.</td>
</tr>
<tr>
<td></td>
<td>Log set to Yes (event is logged)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Log set to No (default setting)</td>
<td></td>
</tr>
<tr>
<td>New</td>
<td></td>
<td>The "New" button adds a new firewall rule below the last rule.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The "Delete" button deletes the relevant rule from the table.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The arrows can be used to move the rule up/down a row.</td>
</tr>
</tbody>
</table>
Outgoing Traffic

Lists the firewall rules that have been set up. They apply for outgoing data connections that have been initiated internally in order to communicate with a remote partner.

Default settings: A rule is defined by default that allows all outgoing connections.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>TCP, UDP, ICMP, all</th>
</tr>
</thead>
<tbody>
<tr>
<td>From IP/To IP</td>
<td>0.0.0.0/0 means all IP addresses. To specify an address area, use CIDR format (see "CIDR (Classless Inter-Domain Routing)" on page 3-61).</td>
</tr>
<tr>
<td>From Port/To Port</td>
<td>(Only evaluated for TCP and UDP protocols.)</td>
</tr>
<tr>
<td>Action</td>
<td>Accept: the data packets may pass through</td>
</tr>
<tr>
<td>Log</td>
<td>For each individual firewall rule you can specify whether the event is to be logged if the rule is applied.</td>
</tr>
<tr>
<td></td>
<td>Log set to Yes (event is logged)</td>
</tr>
<tr>
<td>New</td>
<td>The "New" button adds a new firewall rule below the last rule.</td>
</tr>
<tr>
<td></td>
<td>The "Delete" button deletes the relevant rule from the table.</td>
</tr>
<tr>
<td></td>
<td>The arrows can be used to move the rule up/down a row.</td>
</tr>
</tbody>
</table>

If no rule is defined, all outgoing connections are prohibited (excluding VPN).
3.6.3 NAT Table (setting port forwarding)

Lists the rules established for (Network Address Translation).

The 3G router has one IP address, which can be used to access the router externally.

For incoming data packets, the device can convert the specified sender IP addresses to internal addresses, a technique referred to as NAT (Network Address Translation). Using the port number, the data packets can be redirected to internal IP address ports.

Network Security >> NAT table

<table>
<thead>
<tr>
<th>Protocol</th>
<th>TCP, UDP, ICMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Port/To Port</td>
<td>(Only evaluated for TCP and UDP protocols.)</td>
</tr>
<tr>
<td></td>
<td>– any refers to any port.</td>
</tr>
<tr>
<td></td>
<td>– startport-endport (e.g., 110:120) refers to a port area</td>
</tr>
<tr>
<td>To IP</td>
<td>0.0.0.0/0 means all IP addresses. To specify an address area, use CIDR format (see "CIDR (Classless Inter-Domain Routing)" on page 3-61).</td>
</tr>
<tr>
<td>Masq</td>
<td>For each individual rule you can specify whether IP masquerading should be used.</td>
</tr>
<tr>
<td></td>
<td>– Set Masq to Yes (IP masquerading activated, answer in mobile phone network is possible)</td>
</tr>
<tr>
<td></td>
<td>– Set Masq to No (default setting, answer in mobile phone network not possible)</td>
</tr>
<tr>
<td>Log</td>
<td>For each individual rule you can specify whether the event is to be logged if the rule is applied.</td>
</tr>
<tr>
<td></td>
<td>– Log set to Yes (event is logged)</td>
</tr>
<tr>
<td></td>
<td>– Log set to No (default setting)</td>
</tr>
<tr>
<td>Network Security >> NAT table [...]</td>
<td>New</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
</tr>
</tbody>
</table>

The "New" button adds a new rule below the last rule. The "Delete" button deletes the relevant rule from the table. The arrows can be used to move the rule up/down a row.
3.7 VPN

Requirements for a VPN connection

A general requirement for a VPN connection is that the IP addresses of the VPN partners are known and can be accessed.

In order to successfully establish an IPsec connection, the VPN remote peer must support IPsec with the following configuration:

- Authentication via pre-shared secret key (PSK) or X.509 certificate
- ESP
- Diffie-Hellman group 2 or 5
- 3DES or AES encryption
- MD5 or SHA-1 hash algorithms
- Tunnel mode
- Quick mode
- Main mode
- SA lifetime (1 second to 24 hours)
3.7.1 IPsec Connections (IPsec connection setup)

IPsec (Internet Protocol Security) is a security protocol that is used for communication via IP networks.

VPN >> IPsec >> Connections

If the VPN partner does not have a fixed IP address and a DynDNS name is used as a "Remote host", activate the "Monitor DynDNS" function in order to check accessibility.

Monitor DynDNS

- **Check interval**: Enter a check interval in seconds.
- **Enable**: Specifies whether the defined VPN connection should be active (**Yes**) or not (**No**).
- **Name**: Assign a descriptive name to each VPN connection. The connection can be freely named and renamed.
- **Settings**: Click on **Edit** to specify the settings for IPsec (see Page 3-33).
- **IKE**: The Internet Key Exchange protocol provides automatic key management for IPsec. Click on **Edit** to specify the settings for IKE (see Page 3-36).
3.7.1.1 Settings >> Edit

VPN >> IPsec >> Connections >> Settings >> Edit

IPsec Connection Settings

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>kps1</td>
</tr>
<tr>
<td>VPN</td>
<td># Disable Enable</td>
</tr>
<tr>
<td>Remote Host</td>
<td></td>
</tr>
<tr>
<td>Authentication</td>
<td>T-309 Remote Certificate</td>
</tr>
<tr>
<td>Remote Certificate</td>
<td>None</td>
</tr>
<tr>
<td>Local Certificate</td>
<td>None</td>
</tr>
<tr>
<td>Remote ID</td>
<td></td>
</tr>
<tr>
<td>Local ID</td>
<td></td>
</tr>
<tr>
<td>Address Remote Network</td>
<td>192.168.1.2/24</td>
</tr>
<tr>
<td>Address Local Network</td>
<td>192.168.1.0/24</td>
</tr>
<tr>
<td>Local 1:1 NAT</td>
<td>192.168.1.0/24</td>
</tr>
<tr>
<td>Remote Connection</td>
<td>Accept</td>
</tr>
<tr>
<td>IP Autoreset</td>
<td>Always</td>
</tr>
</tbody>
</table>

Notes

- **VPN** specifies whether the defined VPN connection should be active (**Enable**) or not (**Disable**).

- **Remote Host** is an IP address or URL of the partner to which (or from which) the tunnel will be created. The **Remote Host** setting is only used if **Initiate** has been selected under **Remote Connection**, i.e., the router establishes the connection.

- If **Remote Connection** is set to **Accept**, the value "%any" is set internally for **Remote Host** in order to wait for a connection.
<table>
<thead>
<tr>
<th>Authentication</th>
<th>X.509 Remote Certificate - X.509 certificate authentication method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>With the X.509 certificate option, each VPN device has a private key and a public key in the form of an X.509 certificate, which contains additional information about the certificate's owner and the certification authority (CA).</td>
</tr>
<tr>
<td></td>
<td>The procedure for creating an X.509 certificate is described under "Creating certificates" on page 4-1.</td>
</tr>
<tr>
<td>Preshared Secret Key</td>
<td>Preshared Secret Key - Preshared Secret Key (PSK) authentication procedure</td>
</tr>
<tr>
<td></td>
<td>With a Preshared Secret Key (PSK), each VPN participant knows one shared private key, one password.</td>
</tr>
<tr>
<td>Remote Certificate</td>
<td>Specifies the certificate the router uses to authenticate the VPN partner (partner certificate, .pem)</td>
</tr>
<tr>
<td></td>
<td>The certificate can be selected from the selection list.</td>
</tr>
<tr>
<td></td>
<td>The selection list contains the certificates that have been loaded on the router (see "IPsec Certificates (Certificate upload)" on page 3-38).</td>
</tr>
<tr>
<td>Local Certificate</td>
<td>Specifies which certificate the router shows to the VPN partner (machine certificate, PKCS#12).</td>
</tr>
<tr>
<td></td>
<td>The certificate can be selected from the selection list.</td>
</tr>
<tr>
<td></td>
<td>The selection list contains the certificates that have been loaded on the router (see "IPsec Certificates (Certificate upload)" on page 3-38)</td>
</tr>
<tr>
<td>Remote ID</td>
<td>Standard: empty field</td>
</tr>
<tr>
<td></td>
<td>The Remote ID can be used to specify the name the router uses to identify itself to the partner. It must match the data in the router certificate. If the field is left empty, the data from the certificate is used.</td>
</tr>
<tr>
<td></td>
<td>Valid values:</td>
</tr>
<tr>
<td></td>
<td>- Empty, i.e., no entry (default). The "Subject" entry (previously "Distinguished Name") in the certificate is then used.</td>
</tr>
<tr>
<td></td>
<td>- The "Subject" entry in the certificate.</td>
</tr>
<tr>
<td></td>
<td>One of the Subject Alternative Names, if they are listed in the certificate. If the certificate contains Subject Alternative Names, these are specified under "Valid values:". These can be IP addresses, host names with "@" prefixes or e-mail addresses.</td>
</tr>
</tbody>
</table>
VPN >> IPsec >> Connections >> Settings >> Edit [...]

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local ID</td>
<td>Standard: empty field</td>
</tr>
<tr>
<td></td>
<td>The Local ID can be used to specify the name the router uses to identify itself to the partner.</td>
</tr>
<tr>
<td></td>
<td>For a more detailed explanation, see Remote ID.</td>
</tr>
<tr>
<td>Address Remote Network</td>
<td>IP address/subnet mask of the remote network to which the VPN connection is to be established.</td>
</tr>
<tr>
<td>Address Local Network</td>
<td>IP address/subnet mask of the local network.</td>
</tr>
<tr>
<td></td>
<td>Here, specify the address of the network or computer, which is connected locally to the router.</td>
</tr>
<tr>
<td>Local 1:1 NAT</td>
<td>With the 1:1 NAT function, the local IP addresses for communication via VPN tunnel on 1:1 NAT are mapped on the addresses for the set networks.</td>
</tr>
<tr>
<td></td>
<td>The subnet mask remains unchanged.</td>
</tr>
<tr>
<td></td>
<td>Here, enter the IP address for the local network under which this network is reached via 1:1 NAT from the remote network.</td>
</tr>
<tr>
<td>Remote Connection</td>
<td>Here you can specify from which side the connection can be established.</td>
</tr>
<tr>
<td></td>
<td>The VPN connection is started by the router (Initiate) or initiated by the partner (Accept).</td>
</tr>
<tr>
<td></td>
<td>In addition, starting and stopping the VPN tunnel for digital input (Initiate on Input) can be configured. The VPN can be started on SMS</td>
</tr>
<tr>
<td></td>
<td>(Initiate on SMS) and on call (Initiate on Call). It also must be determined after how many minutes on auto reset the VPN tunnel will be stopped.</td>
</tr>
</tbody>
</table>
3.7.1.2 IKE >> Edit

IPsec - Internet Key Exchange Settings

Name

The name of the VPN connection entered under IPsec Connections.

Encryption Algorithm

(ISAKMP) is a protocol for the creation of Security Associations (SA) and the exchange of keys on the Internet.

AES128 is preset as standard.

Fundamentally, the following applies: The more bits an encryption algorithm has (specified by the appended number), the more secure it is. The relatively new AES-256 method is therefore the most secure, however it is not used that widely yet.

The longer the key, the more time-consuming the encryption procedure.

Leave this set to all. It then will not make a difference whether the remote peer is operating with MD5 or SHA-1.
ISAKMP SA Lifetime (sec.)

The keys of an IPsec connection are renewed at defined intervals in order to increase the difficulty of an attack on an IPsec connection.

- **ISAKMP SA Lifetime**
 - Lifetime in seconds of the keys agreed for the ISAKMP SA.
 - Factory default setting: 3600 seconds (1 hour).
 - The maximum permitted lifetime is 86400 seconds (24 hours).

In contrast to Phase 1 ISAKMP SA (key exchange), the procedure for data exchange is defined here. It does not necessarily have to differ from the procedure defined for key exchange.

IPsec SA Encryption

See ISAKMP SA Encryption

IPsec SA Hash

See ISAKMP SA Encryption

IPsec SA Lifetime (sec.)

Lifetime in seconds of the keys agreed for IPsec SA.

- Factory default setting: 28800 seconds (8 hours). The maximum lifetime is 86400 seconds (24 hours).

Perfect Forward Secrecy (PFS)

Yes: Perfect Forward Secrecy activated

No: Perfect Forward Secrecy deactivated

DH/PFS Group

Key exchange procedure (defined in RFC 3526 – More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key Exchange (IKE))

- **Perfect Forward Secrecy (PFS)**: Method for providing increased security during data transmission. With IPsec, the keys for data exchange are renewed at defined intervals. With PFS, new random numbers are negotiated with the remote peer, instead of being derived from previously agreed random numbers.

 - 5/modp1536 – 2/modp1024

Fundamentally, the following applies: The more bits an encryption algorithm has (specified by the appended number), the more secure it is. The longer the key, the more time-consuming the encryption procedure.

Dead Peer Detection

If the partner supports the Dead Peer Detection (DPD) protocol, the relevant partners can detect whether or not the IPsec connection is still valid and whether it needs to be established again.

Behavior in the event that the IPsec connection is aborted:

- **Off**: No Dead Peer Detection
- **On**: Dead Peer Detection activated in "Restart" mode for VPN Initiate and/or in "Clear" mode for VPN Accept.
3.7.2 IPsec Certificates (Certificate upload)

A certificate that is loaded on the router is used to authenticate the router at the partner. The certificate acts as an ID card for the router, which it shows to the relevant partner.

By importing a PKCS#12 file, the router is provided with a private key and the corresponding certificate. Multiple PKCS#12 files can be loaded on the router, enabling the router to show the desired self-signed or a CA-signed machine certificate to the partner for various connections.

To use a certificate that is installed here, the certificate must be assigned under **VPN >> IPsec >> Connections >> Settings >> Edit**.
Click "Apply" to load the certificate onto the router.

Here you can upload certificates, which the router can use for authentication with the VPN partner.

Upload

Import the certificate. Click on "Browse" to select the certificate that is to be imported.

Under VPN >> IPsec >> Connections >> Settings >> Edit, one of the certificates listed under Remote Certificate or Local Certificate can be assigned to each VPN connection.

Password

In the Password field, enter the password used to protect the private key of the PKCS#12 file. The password is assigned when the key is exported.
VPN >> IPsec >> Certificates

<table>
<thead>
<tr>
<th>Certificate Type</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Remote Certificates** | Overview of the imported .cer/.crt certificates
Click on "Delete" to delete a certificate. |
| **Own Certificates** | Overview of the imported PKCS#12 certificates
Click on "Delete" to delete a certificate.
The symbols indicate whether a CA certificate, a machine certificate or a private key was found in the PKCS#12 file (green = present). |
3.7.3 IPsec Status (Status of the VPN connection)

<table>
<thead>
<tr>
<th>Status</th>
<th>Active IPsec Connection</th>
<th>Status of the active VPN connection</th>
</tr>
</thead>
</table>

VPN >> IPsec >> Status

![Diagram of the IPsec Status interface](image)

- **Active IPsec Connections**
- **Remote Host**
- **SAKMP SA**
- **IPsec SA**

Example: Modem zu mGuard 172.31.193.624

- ![Green checkmark](image)
- ![Green checkmark](image)
3.7.4 OpenVPN Client (Create OpenVPN connections)

OpenVPN is a program for creating a virtual, private network (VPN) via an encrypted connection.

<table>
<thead>
<tr>
<th>OpenVPN Status</th>
<th>VPN</th>
<th>Specifies whether the OpenVPN client should be active (Enable) or not (Disable).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td></td>
<td>Assign a descriptive name to the OpenVPN connection. The connection can be freely named and renamed.</td>
</tr>
<tr>
<td>Remote Host</td>
<td></td>
<td>IP address or URL of the partner to which the tunnel will be created.</td>
</tr>
<tr>
<td>Remote Port</td>
<td></td>
<td>Partner port to which the tunnel is constructed (default 1194).</td>
</tr>
<tr>
<td>Protocol</td>
<td></td>
<td>Choose whether OpenVPN UDP or TCP will be used for transport.</td>
</tr>
<tr>
<td>LZO compression</td>
<td></td>
<td>Choose whether the OpenVPN connection data transmission should be compressed.</td>
</tr>
<tr>
<td>Allow Remote Float</td>
<td></td>
<td>Activate this option in order to accept authenticated packets from each IP address for the OpenVPN connection. This option is recommended when dynamic IP addresses are used for communication.</td>
</tr>
<tr>
<td>Local Port</td>
<td></td>
<td>Local port that the tunnel is built from (default 1194).</td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
<td>X.509 Certificate - X.509 certificate authentication method</td>
</tr>
</tbody>
</table>
Configuration via WBM

VPN >> OpenVPN >> Client [...]

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local Certificate</td>
<td>Specifies which certificate the router shows to the VPN partner.</td>
</tr>
<tr>
<td>Check Remote Certificate Type</td>
<td>Activate this option to check the OpenVPN connection certificate.</td>
</tr>
<tr>
<td>Encryption</td>
<td>Choose the encryption algorithm for the OpenVPN connection.</td>
</tr>
</tbody>
</table>
| **Keep Alive** | Period of time in seconds after which Keep Alive requests should be sent. These requests test whether the partner is still available.
 Default setting: 30 seconds. |
| **Restart** | Period of time in seconds after which the connection to the remote peer should be re-started, if there has been no response to the Keep Alive requests.
 Default setting: 120 seconds. |
3.7.5 OpenVPN Certificates (Certificate upload)

A certificate that is loaded on the router is used to authenticate the router at the partner. The certificate acts as an ID card for the router, which it shows to the relevant partner.

VPN >> OpenVPN >> Certificates

OpenVPN Certificates

Load Own PKCS#12 Certificate (.p12)

Upload

Password

Own Certificate

Name

Import the certificate you have received from your provider. The file must be in PKCS#12 format. Click on "Browse" to select the certificate that is to be imported.

Under VPN >> OpenVPN >> Client, one of the certificates listed under Local Certificate can be assigned to each VPN connection.

In the Password field, enter the password used to protect the private key of the PKCS#12 file. The password is assigned when the key is exported.

Overview of the imported PKCS#12 certificates

Click on "Delete" to delete a certificate.

The symbols indicate whether a CA certificate, a machine certificate or a private key was found in the PKCS#12 file (green = present).
3.7.6 OpenVPN Status (VPN connection status)

<table>
<thead>
<tr>
<th>Status</th>
<th>Active OpenVPN Connection</th>
<th>Status of the active VPN connection</th>
</tr>
</thead>
</table>

- **VPN >> OpenVPN >> Status**

OpenVPN Status

<table>
<thead>
<tr>
<th>Name</th>
<th>Remote Host</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>client</td>
<td>217.31.133.246</td>
<td>✔</td>
</tr>
</tbody>
</table>
3.8 I/O

The router has six integrated digital switching outputs and four integrated digital switching outputs for alerting and switching.

3.8.1 Inputs (Configuring inputs)

The inputs can be used by SMS or e-mail alerts. Each input can be configured individually. Make sure that inputs that are, for example, used to start a VPN connection, cannot also be used for alerts.

Activate "High" when a message should be sent at a "High" input level. Click on "Apply" and choose whether you want to be alerted by SMS or e-mail.

Click on "Edit" and choose the SMS recipient from the phone book and enter the message text. For an e-mail alert, enter the recipient in the "To" field, the copy recipient in the "Cc" field, and the subject and message text in the "Subject" field.
I/O >> Inputs [...]

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Activate "Low" when a message should be sent at a "Low" input level. Click on "Apply" and choose whether you want to be alerted by SMS or e-mail. Click on "Edit" and choose the SMS recipient from the phone book and enter the message text. For an e-mail alert, enter the recipient in the "To" field, the copy recipient in the "Cc" field, and the subject and message text in the "Subject" field.</td>
</tr>
<tr>
<td>Alarm</td>
<td>Activate the "ALR" LED and set the light duration for the LED in minutes.</td>
</tr>
</tbody>
</table>
3.8.2 Outputs (Configuring outputs)

The outputs can be switched remotely or, alternatively, provide information about the router’s status. Each output can be configured individually.

<table>
<thead>
<tr>
<th>Outputs</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manual</td>
<td>Manual switching of the output via the WBM.</td>
</tr>
<tr>
<td>Remote Controlled</td>
<td>Remote switching via SMS or Socket Server. Optionally, automatic reset of the output can be used. Activate "Auto reset" and set the time duration in minutes.</td>
</tr>
<tr>
<td>Radio Network</td>
<td>The output is switched when the router is logged into a mobile phone network.</td>
</tr>
<tr>
<td>Packet Service</td>
<td>The output is switched when the router has built up in a packet data connection and received a valid IP address from the provider.</td>
</tr>
<tr>
<td>VPN Service</td>
<td>The output is switched when the router has built up in a VPN connection.</td>
</tr>
<tr>
<td>Connection Lost</td>
<td>The output is switched when the router connection check does not reach the configured reference address.</td>
</tr>
</tbody>
</table>

Autoreset: Automatic reset of the output - fix the time period in minutes.
3.8.3 Phonebook

Here, enter the call numbers for recipients of the alarm SMS messages and for those entitled to switch outputs.
3.8.4 Socket Server

The router has a socket server that can accept operating commands via Ethernet interface. These commands must be sent in XML format.

3.8.4.1 Sending SMS

Send XML data with the following structure via Ethernet to the modem IP address:

```xml
<?xml version="1.0"?>
<cmgs destaddr="0172 123 4567">SMS Message</cmgs>
```

Make sure that the XML data does not contain any line breaks and that the text is UTF-8 coded.

ASCII rows 34dec, 38dec, 39dec, 60dec und 62dec must be entered as " and '

If the XML data is received correctly, the modem answers with the sending status:

```xml
<?xml version="1.0"?><result><cmgs length="17">SMS accepted</cmgs></result>
```
3.8.4.2 Switch outputs

In addition, outputs can be set and inputs read. The outputs used must be configured previously to "Remote Controlled":

```xml
<?xml version="1.0"?>
<io>
  <output no="2" value="on">
  <output no="3" value="off">
  <input no="1"/>
  </io>
  </io>
</result>
```

Response from modem (representation with line break):
```xml
<?xml version="1.0"?>
<result>
  <io>
    <output no="2" value="on">
    <output no="3" value="off">
    <input no="1" value="off"/>
    </io>
  </io>
</result>
```

Make sure that the XML files do not contain any line breaks.
3.9 System

3.9.1 User (Password modification)

System >> User

User Setup

Admin
- Unrestricted access to all areas
- **Old password:** Old password
- **New password:** New password
- **Retype new password:** Enter new password again

User
- Restricted access (read-only)
- Default: public
- **Old password:** Old password
- **New password:** New password
- **Retype new password:** Enter new password again
3.9.2 Log Configuration

The router can store log files via UDP on an external log server.

System >> Log Configuration

Remote UPD Logging

- **Disable**: No external logging active.
- **Enable**: Logging on external server activated.

Server IP Address

Log server IP address

Server Port (default 514)

Log server port (default 514)
3.9.3 Log File

With the help of the router log file, different events and operating conditions can be diagnosed. The log file provides circulating storage where the oldest entries are overwritten first.

System >> Log File

<table>
<thead>
<tr>
<th>Log File</th>
<th>Clear</th>
<th>Deletes all entries in the log file.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>View</td>
<td>Shows the log file in the browser window.</td>
</tr>
<tr>
<td></td>
<td>Save</td>
<td>Saves the log file as a text file on the local computer.</td>
</tr>
</tbody>
</table>
3.9.4 SMTP Configuration

For mail alerts, the mail server over which the alert e-mails will be sent can be configured here. The mail server must support the SMTP protocol. SMTP stands for Simple Mail Transfer Protocol.

SMTP Configuration

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMTP Server</td>
<td>Host name or IP address of the mail server</td>
</tr>
<tr>
<td>Server Port (default 25)</td>
<td>Mail server port (default 25)</td>
</tr>
<tr>
<td>Transport Layer Security</td>
<td>None: unencrypted connection to mail server</td>
</tr>
<tr>
<td></td>
<td>STARTTLS: after STARTTLS, encrypted connection to mail server</td>
</tr>
<tr>
<td></td>
<td>SSL/TLS: encrypted connection to mail server via SSL/TLS</td>
</tr>
<tr>
<td>Authentication</td>
<td>No authentication: No authentication required.</td>
</tr>
<tr>
<td></td>
<td>Plain Password: Authentication with user name and password. User name and password are transmitted without being encrypted</td>
</tr>
<tr>
<td></td>
<td>Encrypted Password: Authentication with user name and password. User name and password are transmitted in encrypted form.</td>
</tr>
<tr>
<td>Username</td>
<td>User name for login to mail server</td>
</tr>
<tr>
<td>Password</td>
<td>Affiliated password for login to mail server</td>
</tr>
<tr>
<td>From</td>
<td>Sender mail address</td>
</tr>
</tbody>
</table>
3.9.5 Configuration Up-/Download

The current configuration can be saved in a file and prepared configurations can be downloaded via WBM.

System >> Configuration Up-/Download

<table>
<thead>
<tr>
<th>Configuration Up-/Download</th>
<th>Download</th>
<th>Upload</th>
<th>Reset to Factory Defaults</th>
</tr>
</thead>
<tbody>
<tr>
<td>Download</td>
<td>Click on "Save" to locally save the current configuration in a file.</td>
<td>Import a saved configuration. Click on "Browse" to select the configuration to be imported. Click "Apply" to download the selected configuration.</td>
<td>Click on "Apply" to set the router back to default upon delivery. This will reset all settings, including IP settings. Imported certificates remain unaltered.</td>
</tr>
</tbody>
</table>
3.9.6 RTC (Time and date setup)

Here you can set the time manually if no NTP server has been set up (see below) or the NTP server cannot be reached.

Select the time zone.

Daylight saving time

- **Disable**: Daylight savings is not taken into account.
- **Enable**: Daylight savings is taken into account.

As soon as **NTP Synchronization** is set to **Enable**, the router references the date and time from a time server and synchronizes with it.

Initial time synchronization can take up to 15 minutes. During this time, the router continuously compares the time data of the external time server and that of its own “clock” so that this can be adjusted as accurately as possible. Only then can the router act as the NTP server for the devices connected to its LAN interface and provide the system time.
The router can act as the NTP server for computers that are connected to its LAN port. In this case, the devices should be configured so that the local address of the router is specified as the NTP server address.

So that the router can act as the NTP server, it must obtain the current date and the current time from an NTP server (time server). To do this, the address of an NTP server must be specified. In addition, NTP Synchronization must be set to Enable.

Enable: The router appears in the local network as the time server. The devices in the local network do not reference the time via the Internet. Costs can thus be reduced.

Disable: The router is not a time server for the local network.

<table>
<thead>
<tr>
<th>Time Server for Local Network</th>
<th>Time Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTP Server</td>
<td>NTP - Network Time Protocol</td>
</tr>
</tbody>
</table>

The router can act as the NTP server for computers that are connected to its LAN port. In this case, the devices should be configured so that the local address of the router is specified as the NTP server address.

So that the router can act as the NTP server, it must obtain the current date and the current time from an NTP server (time server). To do this, the address of an NTP server must be specified. In addition, NTP Synchronization must be set to Enable.

Enable: The router appears in the local network as the time server. The devices in the local network do not reference the time via the Internet. Costs can thus be reduced.

Disable: The router is not a time server for the local network.
3.9.7 Reboot (Router restart)

System >> Reboot

Reboot

Reboot NOW!

Click on **Reboot NOW!** to trigger a router restart.

Any active data transmissions will be aborted.

Daily reboot

Define the day of the week on which the router will restart at the determined time.

Following a reboot, the mobile phone network must be logged into again. The provider resets the data connection and calculates charges. Regular rebooting provides protection against the provider aborting and reestablishing the connection at an unforeseeable point in time.

Time

Time specified in Hours:Minutes

Event

Choose the digital input for which the "High" signals from the router will be restarted as needed.

Make sure that after restarting, the signal is "Low" again so the router boots up normally.
3.9.8 Firmware Update

Updates ensure that you can benefit from enhanced functions and product updates.

Updates can be downloaded at: www.phoenixcontact.net/catalog

To install updates:
1. Click on "Browse" and select the file that contains the update.
2. Then click "Apply".
3.10 CIDR (Classless Inter-Domain Routing)

IP subnet masks and CIDR are methods of notation that combine several IP addresses to create a single address area. An area comprising consecutive addresses is handled like a network.

To specify an area of IP addresses for the router, e.g., when configuring the firewall, it may be necessary to specify the address area in CIDR format. In the table below, the left-hand column shows the IP subnet mask, while the right-hand column shows the corresponding CIDR format.

<table>
<thead>
<tr>
<th>Binary IP subnet mask</th>
<th>CIDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>255.255.255.255</td>
<td>32</td>
</tr>
<tr>
<td>255.255.255.254</td>
<td>31</td>
</tr>
<tr>
<td>255.255.255.252</td>
<td>30</td>
</tr>
<tr>
<td>255.255.255.248</td>
<td>29</td>
</tr>
<tr>
<td>255.255.255.240</td>
<td>28</td>
</tr>
<tr>
<td>255.255.255.224</td>
<td>27</td>
</tr>
<tr>
<td>255.255.255.192</td>
<td>26</td>
</tr>
<tr>
<td>255.255.255.128</td>
<td>25</td>
</tr>
<tr>
<td>255.255.254.0</td>
<td>23</td>
</tr>
<tr>
<td>255.255.252.0</td>
<td>22</td>
</tr>
<tr>
<td>255.255.248.0</td>
<td>21</td>
</tr>
<tr>
<td>255.255.240.0</td>
<td>20</td>
</tr>
<tr>
<td>255.255.224.0</td>
<td>19</td>
</tr>
<tr>
<td>255.255.192.0</td>
<td>18</td>
</tr>
<tr>
<td>255.255.128.0</td>
<td>17</td>
</tr>
<tr>
<td>255.254.0.0</td>
<td>16</td>
</tr>
<tr>
<td>255.252.0.0</td>
<td>15</td>
</tr>
<tr>
<td>255.248.0.0</td>
<td>14</td>
</tr>
<tr>
<td>255.240.0.0</td>
<td>13</td>
</tr>
<tr>
<td>255.224.0.0</td>
<td>12</td>
</tr>
<tr>
<td>255.192.0.0</td>
<td>11</td>
</tr>
<tr>
<td>255.128.0.0</td>
<td>10</td>
</tr>
<tr>
<td>254.0.0.0</td>
<td>9</td>
</tr>
<tr>
<td>252.0.0.0</td>
<td>8</td>
</tr>
<tr>
<td>248.0.0.0</td>
<td>7</td>
</tr>
<tr>
<td>240.0.0.0</td>
<td>6</td>
</tr>
<tr>
<td>224.0.0.0</td>
<td>5</td>
</tr>
<tr>
<td>192.0.0.0</td>
<td>4</td>
</tr>
<tr>
<td>128.0.0.0</td>
<td>3</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>2</td>
</tr>
<tr>
<td>0.0.0.0</td>
<td>1</td>
</tr>
</tbody>
</table>

Example: 192.168.1.0/255.255.255.0 corresponds in CIDR format to: 192.168.1.0/24
4 Creating certificates

Certificates are required for a secure VPN connection.

Certificates can be acquired from certification authorities or you can create them using the appropriate software. For example, X.509 certificates are created using Version 0.6.4 of the XCA program. The XCA program can be downloaded at http://xca.sourceforge.net.

4.1 Installing XCA

1. Start the setup_xca-0.6.4.exe setup file and follow the on-screen instructions of the setup program.

4.2 Creating a database

These instructions for creating self-signed certificates are based on version 0.6.4 of the XCA program.

1. Once installed, start the XCA program.

![XCA Version 0.6.4 (1)](image)
2. Create a new database via the "File… New Database" menu item.

3. Assign a password to encrypt the database.

4. Select the "File... Options" menu item.

5. Change the hash algorithm from SHA 256 to SHA 1.
4.3 Creating a CA certificate

First you must create a certification authority (CA) certificate.

This root certificate acts as an entity that certifies and authenticates the signing of all certificates that are derived from it and thus guarantees the authenticity of the certificate that is in circulation.

1. Switch to the "Certificate" tab and click on "New Certificate".

In the program window shown, there is already a preset self-signed certificate with the signature algorithm SHA-1.
2. Switch to the "Subject" tab.

3. Here, enter the information about the owner of the root certificate.

4. Click on "Generate a new key".

5. Do not change the default key size and type.

6. Specify a name.
7. Switch to the "Extensions" tab.

The period of validity of the certificate is specified on the "Extensions" tab. The root certificate should have a longer period of validity than the machine certificates that are to be created later.

In this example, the period of validity is set to 10 years. The certificate type is already set to "Certificate Authority" by default.

8. Activate all the options as shown in Figure 4-7.
9. Switch to the "Key Usage" tab.

![Image of X Certificate and Key management](image1.png)

Figure 4-8 XCA Version 0.6.4 (8)

10. Select the "Certificate Sign" and "CRL Sign" options and click "OK" to complete root certificate creation.

 This certificate has been successfully created.

11. A new root certificate from which further machine certificates can be derived now appears in the overview.

![Image of X Certificate and Key management](image2.png)

Figure 4-9 XCA Version 0.6.4 (9)
4.4 Creating machine certificates

4.4.1 Creating templates

The further creation of machine certificates can be simplified by using templates.

1. Switch to the "Templates" tab.

2. Click on "New Template" to create a terminal certificate.

3. In the "Preset Template Values" prompt that appears, select "Nothing". On the "Subject" tab, specify the settings for the certificates that are to be created later.
4. The following window appears. Stay on the "Subject" tab.

![X Certificate and Key management]

Figure 4-11 XCA Version 0.6.4 (11)

Two names appear in angular brackets ("Internal name" and "Common name"). The names in the angular brackets are simply placeholders, as the actual names are assigned to the certificates. When using the template, the names are set individually.
5. Switch to the "Extensions" tab.

![XCA Version 0.6.4](image)

Figure 4-12 XCA Version 0.6.4 (12)

6. Change the certificate type to "End Entity", as the template is to be used for machine certificates.

365 days should be specified as the period of validity of the certificates to be created. After the resulting end date, the certificates can no longer be used.
7. Switch to the "Key Usage" tab.

8. Select the "Digital Signature", "Data Encipherment", and "Key Agreement" options and click "OK" to create the template.

The template can now be used as a basis to create certificates signed with the root certificate.

Figure 4-13 XCA Version 0.6.4 (13)
4.4.2 Creating machine certificates based on a template

A template can be used to create certificates signed with the root certificate.

1. Switch to the “Certificate” tab and click on “New Certificate”.

2. On the “Source” tab, specify the root certificate that is to be used for signing.

3. In addition, you can select a template that has been created and read it in by clicking “Apply”.

![Figure 4-14 XCA Version 0.6.4 (14)](image_url)
4. Switch to the "Subject" tab.

5. Here, enter the information about the owner of the machine certificate. When entering information on this tab, please note that the certificates must differ at least with regard to their name ("Internal name" and "Common name"). The equipment identification of the machine or router, for example, can be used as the name.

6. Click on "Generate a new key".

7. Do not change the default key size, type, and name.

In the previous steps, a self-signed certificate was created as a CA certificate.
Creating certificates

A machine certificate has now been created, which has been signed by the CA.

The machine certificate must be exported so that it can be used on the router.
4.4.3 Exporting machine certificates

1. Select the relevant certificate from the list and click on "Export".
 The entire certificate including the private key must be in PKCS#12 format and can then be uploaded to the relevant component as a machine certificate.

 ![Figure 4-18 XCA Version 0.6.4 (18)]

2. The partner certificate should also be exported.
 This is stored in PEM format without the private key.

 ![Figure 4-19 XCA Version 0.6.4 (19)]
5 Application examples

5.1 Internet access

PSI-MODEM-3G/ROUTER makes it possible to access the Internet via the mobile phone network. For this, a SIM card from a mobile phone provider that has been activated for packet data services, such as GPRS/EDGE, is required.

For this application, the PSI-MODEM-GSM/ETH is:
- Router
- Default gateway
- DNS server
- Firewall

![Diagram of Internet access](image)

Figure 5-1 Internet access

5.1.1 Before you begin

Check the installation location of the router to ensure that there is sufficient network coverage available from your provider. Data links can only be established if this is the case.
5.1.2 Setting up the PSI-MODEM-3G/ROUTER

1. Open a browser on the PC.
2. Enter the IP address (default 192.168.0.1) in the address field of your browser.
3. A user name and password are required in order to log in. The default user name is "admin" and the password is "admin".
4. Open "Wireless Network, SIM" and enter the SIM card's PIN number in the "PIN" field. Also enter the access data, APN, user name, and password for the packet data transmission in your mobile phone network. You can get the access data from your mobile phone provider.

During configuration, do not leave the user name and password empty, even when the provider does not require special input! Otherwise, configuration is not possible.
5. Change to “Wireless Network, Packed Data Setup” and activate packet data transmission in the mobile phone network. Set the "Packet Data" to “Enable”.

6. In order to access the Internet from your PC, you must enter the router’s IP address as the default gateway and DNS server in the network settings. Find out how to adjust these settings to your operating system in the corresponding documentation.
5.2 Safe VPN connections to FL MGUARD

With such a VPN (Virtual Private Network) connection, substations or systems, for example, can be connected safely via the Internet to the control center with a broadband Internet connection (DSL). The broadband Internet connection in the control center must have a fixed IP address or have a fixed name (for example, DynDNS.org). A suitable VPN router for the broadband Internet connection in the control center would be the FL MGUARD RS VPN (Order No. 2989611), for example.

In the router, a SIM card from a mobile phone provider that has been activated for packet data services, such as GPRS/EDGE, is required.

For this application, the PSI-MODEM-3G/ROUTER is:
- VPN Client
- Router
- Default gateway
- Firewall

![Diagram of Safe VPN connections to FL MGUARD](image)

Figure 5-2 Safe VPN connections to FL MGUARD

5.2.1 Before you begin

Check the installation location of the router to ensure that there is sufficient network coverage available from your provider. Data links can only be established if this is the case.
5.2.2 Network overview

This application uses four different networks:

– Network "0", which is connected to a local Ethernet connection for the PSI-MODEM-3G/ROUTER and to the client PC. For all devices in this network, the default gateway is 192.168.0.1 (router IP address) with subnet mask 255.255.255.0.

Here, enter the information for "your" network "0":

IP Modem: __________ . __________ . __________ . __________
(Subnetwork for all devices in the network)

Subnetwork: __________ . __________ . __________ . __________

– Network "1" is the connection via the mobile phone network and the Internet to the DSL broadband connection. The VPN tunnel is constructed from the router to this DSL broadband connection. Therefore, a fixed IP address is required for this broadband connection; or, alternatively, a dynamic IP address with a fixed name, such as via DynDNS, can be used.

Here, enter the information for "your" network "1":

Fixed IP DSL router: __________ . __________ . __________ . __________

Or DynDNS name: __________ . __________ . __________ . __________

– Network "2" is the DSL router's local network and is connected with the WAN Interface, the "external network" of the FL MGUARD RS VPN. For the FL MGUARD RS VPN, the DSL router's local IP address is the default gateway.

Here, enter the information for "your" network "2":

IP DSL router: __________ . __________ . __________ . __________
(Subnetwork for FL MGUARD WAN)

Subnetwork: __________ . __________ . __________ . __________

IP FL MGUARD WAN: __________ . __________ . __________ . __________

In the DSL router, port forwarding for IPSec data packets UDP 500 and UDP 4500 must be configured for the FL MGUARD IP addresses in the "2" network (IP FL MGUARD WAN).

Consult the router user manual for how this is to be set up with your router.

– The "3" network is a local, internal FL MGUARD RS VPN network connected to the central server. For all devices in this network, the default gateway is the FL MGUARD LAN internal IP address.

Here, enter the information for "your" network "3":

IP FL MGUARD LAN: __________ . __________ . __________ . __________
(Subnetwork for all devices in the network)

Subnetwork: __________ . __________ . __________ . __________
In the sample application, the "0" network is connected to the "3" network using the VPN tunnel. If the VPN tunnel is constructed, the other "1" and "2" networks are not visible to the application.

5.2.3 Creating certificates

An individual X.509 certificate is required for each VPN endpoint to ensure a secure VPN connection. These certificates can be acquired from certification authorities or you can create them using the appropriate software, such as XCA ("Creating certificates" on page 4-1).

For this sample application, an X.509 certificate is required for the modem (Device "A") and the FL MGUARD (Device "B"). Each certificate consists of a private and a public part and is made available in two separate files so that four certificate files are required.

5.2.4 Loading certificates in the router

1. Log into web-based management as the administrator.
2. Open "VPN, IPsec, Certificates".
3. First, load the partner certificate (Remote Certificate). To do this, click on "Browse" and select the corresponding "B.crt" certificate file.

4. Click "Apply" to load the certificate file.

5. Next load the local machine certificate (Own PKCS#12 Certificate). To do this, click on "Browse" and select the corresponding "A.p12" certificate file.
6. Enter the certificate file password and click on "Apply" to load the certificate file.

5.2.5 Setting up the VPN connection on the modem

1. Open "VPN, IPsec, Connections".
2. Assign a name to the IPsec VPN connection and confirm with "Apply".
3. In the Settings column, click on "Edit" to set the connection options.
4. Under Remote Host, enter the public IP address of the broadband Internet connection in the control center (Network "1").
5. Now select the partner certificate (Remote Certificate) and the machine certificate (Local Certificate).
6. Enter the IP address/subnet mask for the remote network (Network "3") to which the VPN connection should be made and enter the IP address/subnet mask for the local network (Network "0"). Use the CIDR format.
7. For the VPN connection router to be made automatically after starting, choose "Initiate" under "Remote connection".
5.2.6 Configuring the FL MGUARD RS VPN

Configure the FL MGUARD as a router.

1. Log into web-based management as the administrator.
2. Open "Network, Interfaces".
3. Choose "Router" as the network mode and then "static" as the router mode.
4. Enter the IP address for the FL MGUARD WAN interface and the default gateway address (Network "2").
5. Click "Apply".
5.2.7 Loading certificates on the FL MGUARD RS VPN

1. Here, open "Authentication, Certificate".

2. First load the machine certificate (Own PKCS#12 Certificate). Switch to the "Machine certificate" tab and add a new row.

3. Click on "Browse" and select the corresponding "B.p12" certificate file.
4. Enter the associated certificate file password and click on “Import” to load the certificate file.

5. Click on “Apply” to complete the certificate import.
5.2.8 Setting a packet filter on the FL MGUARD RS VPN

For startup and testing the VPN connection, we recommend that communication not be restricted in the packet filter. For normal operations, you should set the packet filter so that only data traffic that matches your application is allowed.

1. Open "Network Security, Packet Filter".
2. In the Incoming rules and the Outgoing rules tabs, under Protocol set "All" From IP "0.0.0.0/0" to IP "0.0.0.0/0". Under Action set "Accept".
3. Click "Apply" to apply the changes.
5.2.9 Setting up the RS VPN in the FL MGUARD

1. Open “VPN, IPsec VPN, Connections”.
2. Insert a new row and assign a name for the IPsec VPN connection.
3. Click on “Edit” to set the connection options.

4. On the “General” tab under Transport and Tunnel Settings, choose the “Tunnel” type and enter the network address for the local (Network “3”) and remote networks (Network “0”). Use CIDR format.
5. With the "Authentication" tab, choose the already-imported machine certificate "B" as the local X.509 certificate and load the partner certificate (Remote Certificate). To do this, click on "Browse" and select the "A.crt" certificate file.

6. Click on "Upload" to load the certificate file.

7. Switch to the "IKE options" tab and change the ISAKMP SA encryption algorithm (key exchange) and the IPsec SA encryption algorithm (data exchange) to "AES-128".

8. Change "Rekey" to "No". All other settings correspond to the settings in the router by default and can be left as such.
9. Click “Apply” for the changes to be applied.

10. Check the status of the VPN connection. To do so, open “VPN, IPsec VPN, IPSec Status” on the FL MGUARD.

11. In addition, the status of the VPN connection to the router can be checked using the VPN LED and in the Web Based Management. Open “VPN, IPsec, Status”.
5.3 Virtual Ethernet dedicated line

With such a connection, for example, system parts can be connected to one another via a virtual dedicated line over the mobile phone network. At least one of the routers must have a fixed IP address and router-to-router communication must take place in the mobile phone network. Should you have any questions, please contact your provider.

For this application, the PSI-MODEM-3G/ROUTER is:
- VPN client and/or VPN server
- Router
- Default gateway
- Firewall

Figure 5-3 Virtual Ethernet dedicated line

5.3.1 Before you begin

Check the installation location of the router to ensure that there is sufficient network coverage available from your provider. Data links can only be established if this is the case.
5.3.2 Network overview

This application uses three different networks:

- Client network "0", which is connected to a local Ethernet connection for the PSI-MODEM-3G/ROUTER and to the client PC. For all devices in this network, the default gateway is 192.168.0.1 (router IP address) with subnet mask 255.255.255.0.

 Here, enter the information for "your" network "0":

 IP router: __________.__________.__________.__________
 (Default gateway for all devices in the network)

 Subnetwork: __________.__________.__________.__________

- Network "1" is the packet data network (GPRS/EDGE) in the mobile phone network. The VPN tunnel is constructed from the client router to the server router. Therefore, a fixed IP address is required for the server router.

 Here, enter the information for "your" network "1":

 IP server router: __________.__________.__________.__________

- Server network "2", which is connected to a local Ethernet connection for the PSI-MODEM-3G/ROUTER and to the server. For all devices in this network, the default gateway is the router's IP address.

 Here, enter the information for "your" network "2":

 IP router: __________.__________.__________.__________
 (Default gateway for all devices in the network)

 Subnetwork: __________.__________.__________.__________

In the sample application, the "0" network is connected to the "2" network using the VPN tunnel.

5.3.3 Creating certificates

An individual X.509 certificate is required for each VPN endpoint to ensure a secure VPN connection. These certificates can be acquired from certification authorities or you can create them using the appropriate software, such as XCA (see "Creating certificates" on page 4-1).

For this sample application, an X.509 certificate is required for the client router (Device "A") and the server router (Device "B"). Each certificate consists of a private and a public part and is made available in two separate files so that four certificate files are required.
5.3.4 Loading certificates in the client router (Device "A")

1. Log into web-based management as the administrator.
2. Open "VPN, IPsec, Certificates".
3. First, load the partner certificate (Remote Certificate). To do this, click on "Browse" and select the corresponding "B.crt" certificate file.
4. Click "Apply" to load the certificate file.
5. Next load the local machine certificate (Own PKCS#12 Certificate). To do this, click on "Browse" and select the corresponding "A.p12" certificate file.

6. Enter the certificate file password and click on "Apply" to load the certificate file.
5.3.5 Setting up the VPN connection in the client router

1. Open "VPN, IPsec, Connections".
2. Assign a name to the IPsec VPN connection and confirm with "Apply".

![Image of IPsec Connections settings]

3. In the Settings column, click on "Edit" to set the connection options.
4. Under Remote Host, enter the fixed IP address of the server router (Network "1").
5. Now select the partner certificate (Remote Certificate) and the machine certificate (Local Certificate).
6. Enter the IP address/subnet mask for the remote network (Network "2") on which the VPN connection is to be established and the IP address/subnet mask for the local network (Network "0"). Use the CIDR format.
7. For the VPN connection router to be made automatically after starting, choose "Initiate" under "Remote connection".
5.3.6 Loading certificates in the server router (Device "B")

1. Log into web-based management as the administrator.
2. Open "VPN, IPsec, Certificates".
3. First, load the partner certificate (Remote Certificate). To do this, click on "Browse" and select the corresponding "A.crt" certificate file.
4. Click "Apply" to load the certificate file.
5. Next load the local machine certificate (Own PKCS#12 Certificate). To do this, click on "Browse" and select the corresponding "B.p12" certificate file.

6. Enter the certificate file password and click on "Apply" to load the certificate file.
5.3.7 Setting up the VPN connection on the server router

1. Open "VPN, IPsec, Connections".
2. Assign a name to the IPsec VPN connection and confirm with "Apply".
3. In the Settings column, click on "Edit" to set the connection options.
4. Now select the partner certificate (Remote Certificate) and the machine certificate (Local Certificate).
5. Enter the IP address/subnet mask for the remote network (Network "0") to which the VPN connection should be made and enter the IP address/subnet mask for the local network (Network "2"). Use the CIDR format.
6. Choose "Accept" from under "Remote connection" so the router can accept the incoming VPN connection.

7. The status of the VPN connection to the two routers can be checked using the VPN LED and in the Web Based Management. Open "VPN, IPsec, Status".